Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVE(app(nil, YS)) → MARK(YS)
MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
FROM(mark(X)) → FROM(X)
MARK(app(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
CONS(X1, mark(X2)) → CONS(X1, X2)
FROM(active(X)) → FROM(X)
APP(X1, mark(X2)) → APP(X1, X2)
ACTIVE(prefix(L)) → CONS(nil, zWadr(L, prefix(L)))
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(prefix(X)) → MARK(X)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → CONS(app(Y, cons(X, nil)), zWadr(XS, YS))
ACTIVE(prefix(L)) → ZWADR(L, prefix(L))
ZWADR(X1, mark(X2)) → ZWADR(X1, X2)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
APP(active(X1), X2) → APP(X1, X2)
ZWADR(X1, active(X2)) → ZWADR(X1, X2)
S(active(X)) → S(X)
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(zWadr(X1, X2)) → ZWADR(mark(X1), mark(X2))
ZWADR(active(X1), X2) → ZWADR(X1, X2)
MARK(app(X1, X2)) → APP(mark(X1), mark(X2))
CONS(active(X1), X2) → CONS(X1, X2)
ZWADR(mark(X1), X2) → ZWADR(X1, X2)
ACTIVE(from(X)) → FROM(s(X))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(app(cons(X, XS), YS)) → CONS(X, app(XS, YS))
MARK(s(X)) → MARK(X)
MARK(from(X)) → FROM(mark(X))
PREFIX(mark(X)) → PREFIX(X)
CONS(X1, active(X2)) → CONS(X1, X2)
ACTIVE(zWadr(nil, YS)) → MARK(nil)
ACTIVE(zWadr(XS, nil)) → MARK(nil)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(zWadr(X1, X2)) → MARK(X2)
S(mark(X)) → S(X)
MARK(from(X)) → MARK(X)
MARK(s(X)) → S(mark(X))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → CONS(X, nil)
MARK(prefix(X)) → PREFIX(mark(X))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(zWadr(X1, X2)) → MARK(X1)
ACTIVE(from(X)) → S(X)
PREFIX(active(X)) → PREFIX(X)
MARK(app(X1, X2)) → MARK(X1)
ACTIVE(prefix(L)) → MARK(cons(nil, zWadr(L, prefix(L))))
APP(X1, active(X2)) → APP(X1, X2)
ACTIVE(app(cons(X, XS), YS)) → APP(XS, YS)
APP(mark(X1), X2) → APP(X1, X2)
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → APP(Y, cons(X, nil))
MARK(prefix(X)) → ACTIVE(prefix(mark(X)))
MARK(nil) → ACTIVE(nil)
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → ZWADR(XS, YS)
ACTIVE(from(X)) → CONS(X, from(s(X)))

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(app(nil, YS)) → MARK(YS)
MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
FROM(mark(X)) → FROM(X)
MARK(app(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
CONS(X1, mark(X2)) → CONS(X1, X2)
FROM(active(X)) → FROM(X)
APP(X1, mark(X2)) → APP(X1, X2)
ACTIVE(prefix(L)) → CONS(nil, zWadr(L, prefix(L)))
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(prefix(X)) → MARK(X)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → CONS(app(Y, cons(X, nil)), zWadr(XS, YS))
ACTIVE(prefix(L)) → ZWADR(L, prefix(L))
ZWADR(X1, mark(X2)) → ZWADR(X1, X2)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
APP(active(X1), X2) → APP(X1, X2)
ZWADR(X1, active(X2)) → ZWADR(X1, X2)
S(active(X)) → S(X)
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(zWadr(X1, X2)) → ZWADR(mark(X1), mark(X2))
ZWADR(active(X1), X2) → ZWADR(X1, X2)
MARK(app(X1, X2)) → APP(mark(X1), mark(X2))
CONS(active(X1), X2) → CONS(X1, X2)
ZWADR(mark(X1), X2) → ZWADR(X1, X2)
ACTIVE(from(X)) → FROM(s(X))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(app(cons(X, XS), YS)) → CONS(X, app(XS, YS))
MARK(s(X)) → MARK(X)
MARK(from(X)) → FROM(mark(X))
PREFIX(mark(X)) → PREFIX(X)
CONS(X1, active(X2)) → CONS(X1, X2)
ACTIVE(zWadr(nil, YS)) → MARK(nil)
ACTIVE(zWadr(XS, nil)) → MARK(nil)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(zWadr(X1, X2)) → MARK(X2)
S(mark(X)) → S(X)
MARK(from(X)) → MARK(X)
MARK(s(X)) → S(mark(X))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → CONS(X, nil)
MARK(prefix(X)) → PREFIX(mark(X))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(zWadr(X1, X2)) → MARK(X1)
ACTIVE(from(X)) → S(X)
PREFIX(active(X)) → PREFIX(X)
MARK(app(X1, X2)) → MARK(X1)
ACTIVE(prefix(L)) → MARK(cons(nil, zWadr(L, prefix(L))))
APP(X1, active(X2)) → APP(X1, X2)
ACTIVE(app(cons(X, XS), YS)) → APP(XS, YS)
APP(mark(X1), X2) → APP(X1, X2)
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → APP(Y, cons(X, nil))
MARK(prefix(X)) → ACTIVE(prefix(mark(X)))
MARK(nil) → ACTIVE(nil)
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → ZWADR(XS, YS)
ACTIVE(from(X)) → CONS(X, from(s(X)))

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 7 SCCs with 20 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PREFIX(active(X)) → PREFIX(X)
PREFIX(mark(X)) → PREFIX(X)

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PREFIX(active(X)) → PREFIX(X)
PREFIX(mark(X)) → PREFIX(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ZWADR(X1, active(X2)) → ZWADR(X1, X2)
ZWADR(mark(X1), X2) → ZWADR(X1, X2)
ZWADR(X1, mark(X2)) → ZWADR(X1, X2)
ZWADR(active(X1), X2) → ZWADR(X1, X2)

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ZWADR(X1, active(X2)) → ZWADR(X1, X2)
ZWADR(mark(X1), X2) → ZWADR(X1, X2)
ZWADR(X1, mark(X2)) → ZWADR(X1, X2)
ZWADR(active(X1), X2) → ZWADR(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)
S(active(X)) → S(X)

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(active(X)) → FROM(X)

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(active(X)) → FROM(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, active(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(X1, active(X2)) → APP(X1, X2)
APP(mark(X1), X2) → APP(X1, X2)
APP(X1, mark(X2)) → APP(X1, X2)
APP(active(X1), X2) → APP(X1, X2)

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(X1, active(X2)) → APP(X1, X2)
APP(mark(X1), X2) → APP(X1, X2)
APP(X1, mark(X2)) → APP(X1, X2)
APP(active(X1), X2) → APP(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
ACTIVE(app(nil, YS)) → MARK(YS)
MARK(from(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(app(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(zWadr(X1, X2)) → MARK(X1)
ACTIVE(prefix(L)) → MARK(cons(nil, zWadr(L, prefix(L))))
MARK(app(X1, X2)) → MARK(X1)
MARK(prefix(X)) → MARK(X)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(zWadr(X1, X2)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
MARK(prefix(X)) → ACTIVE(prefix(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(from(X)) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
The remaining pairs can at least be oriented weakly.

MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
ACTIVE(app(nil, YS)) → MARK(YS)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(app(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(zWadr(X1, X2)) → MARK(X1)
ACTIVE(prefix(L)) → MARK(cons(nil, zWadr(L, prefix(L))))
MARK(app(X1, X2)) → MARK(X1)
MARK(prefix(X)) → MARK(X)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(zWadr(X1, X2)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
MARK(prefix(X)) → ACTIVE(prefix(mark(X)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(app(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = x1   
POL(from(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(prefix(x1)) = x1   
POL(s(x1)) = x1   
POL(zWadr(x1, x2)) = x1 + x2   

The following usable rules [17] were oriented:

prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(zWadr(XS, nil)) → mark(nil)
active(from(X)) → mark(cons(X, from(s(X))))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(prefix(X)) → active(prefix(mark(X)))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
mark(s(X)) → active(s(mark(X)))
active(app(nil, YS)) → mark(YS)
mark(from(X)) → active(from(mark(X)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
active(zWadr(nil, YS)) → mark(nil)
app(active(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
app(mark(X1), X2) → app(X1, X2)
mark(nil) → active(nil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
ACTIVE(app(nil, YS)) → MARK(YS)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(app(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(zWadr(X1, X2)) → MARK(X1)
ACTIVE(prefix(L)) → MARK(cons(nil, zWadr(L, prefix(L))))
MARK(app(X1, X2)) → MARK(X1)
MARK(prefix(X)) → MARK(X)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(zWadr(X1, X2)) → MARK(X2)
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
MARK(prefix(X)) → ACTIVE(prefix(mark(X)))

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.

MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
ACTIVE(app(nil, YS)) → MARK(YS)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(app(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(zWadr(X1, X2)) → MARK(X1)
ACTIVE(prefix(L)) → MARK(cons(nil, zWadr(L, prefix(L))))
MARK(app(X1, X2)) → MARK(X1)
MARK(prefix(X)) → MARK(X)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(zWadr(X1, X2)) → MARK(X2)
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
MARK(prefix(X)) → ACTIVE(prefix(mark(X)))
Used ordering: Polynomial interpretation [25]:

POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(app(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = x1   
POL(from(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(prefix(x1)) = x1   
POL(s(x1)) = 1 + x1   
POL(zWadr(x1, x2)) = x1 + x2   

The following usable rules [17] were oriented:

prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(zWadr(XS, nil)) → mark(nil)
active(from(X)) → mark(cons(X, from(s(X))))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(prefix(X)) → active(prefix(mark(X)))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
mark(s(X)) → active(s(mark(X)))
active(app(nil, YS)) → mark(YS)
mark(from(X)) → active(from(mark(X)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
active(zWadr(nil, YS)) → mark(nil)
app(active(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
app(mark(X1), X2) → app(X1, X2)
mark(nil) → active(nil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
ACTIVE(app(nil, YS)) → MARK(YS)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(app(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(zWadr(X1, X2)) → MARK(X1)
ACTIVE(prefix(L)) → MARK(cons(nil, zWadr(L, prefix(L))))
MARK(app(X1, X2)) → MARK(X1)
MARK(prefix(X)) → MARK(X)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(zWadr(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
MARK(prefix(X)) → ACTIVE(prefix(mark(X)))

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(prefix(L)) → MARK(cons(nil, zWadr(L, prefix(L))))
MARK(prefix(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.

MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
ACTIVE(app(nil, YS)) → MARK(YS)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(app(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(zWadr(X1, X2)) → MARK(X1)
MARK(app(X1, X2)) → MARK(X1)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(zWadr(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
MARK(prefix(X)) → ACTIVE(prefix(mark(X)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(app(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = x1   
POL(from(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(prefix(x1)) = 1 + x1   
POL(s(x1)) = 0   
POL(zWadr(x1, x2)) = x1 + x2   

The following usable rules [17] were oriented:

prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(zWadr(XS, nil)) → mark(nil)
active(from(X)) → mark(cons(X, from(s(X))))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(prefix(X)) → active(prefix(mark(X)))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
mark(s(X)) → active(s(mark(X)))
active(app(nil, YS)) → mark(YS)
mark(from(X)) → active(from(mark(X)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
active(zWadr(nil, YS)) → mark(nil)
app(active(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
app(mark(X1), X2) → app(X1, X2)
mark(nil) → active(nil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
ACTIVE(app(nil, YS)) → MARK(YS)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(app(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(zWadr(X1, X2)) → MARK(X1)
MARK(app(X1, X2)) → MARK(X1)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(zWadr(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
MARK(prefix(X)) → ACTIVE(prefix(mark(X)))

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(prefix(X)) → ACTIVE(prefix(mark(X)))
The remaining pairs can at least be oriented weakly.

MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
ACTIVE(app(nil, YS)) → MARK(YS)
MARK(app(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(zWadr(X1, X2)) → MARK(X1)
MARK(app(X1, X2)) → MARK(X1)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(zWadr(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(app(x1, x2)) = 1   
POL(cons(x1, x2)) = 0   
POL(from(x1)) = 0   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(prefix(x1)) = 0   
POL(s(x1)) = 0   
POL(zWadr(x1, x2)) = 1   

The following usable rules [17] were oriented:

prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
app(active(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
app(mark(X1), X2) → app(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(app(X1, X2)) → MARK(X1)
ACTIVE(app(nil, YS)) → MARK(YS)
MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(zWadr(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → MARK(X2)
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(zWadr(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(zWadr(X1, X2)) → MARK(X2)
ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) → MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
MARK(zWadr(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.

MARK(app(X1, X2)) → MARK(X1)
ACTIVE(app(nil, YS)) → MARK(YS)
MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(app(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
MARK(cons(X1, X2)) → MARK(X1)
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(app(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = x1   
POL(from(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(prefix(x1)) = x1   
POL(s(x1)) = 0   
POL(zWadr(x1, x2)) = 1 + x1 + x2   

The following usable rules [17] were oriented:

prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(zWadr(XS, nil)) → mark(nil)
active(from(X)) → mark(cons(X, from(s(X))))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(prefix(X)) → active(prefix(mark(X)))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
mark(s(X)) → active(s(mark(X)))
active(app(nil, YS)) → mark(YS)
mark(from(X)) → active(from(mark(X)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
active(zWadr(nil, YS)) → mark(nil)
app(active(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
app(mark(X1), X2) → app(X1, X2)
mark(nil) → active(nil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(app(X1, X2)) → MARK(X1)
MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
ACTIVE(app(nil, YS)) → MARK(YS)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(app(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(zWadr(X1, X2)) → ACTIVE(zWadr(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.

MARK(app(X1, X2)) → MARK(X1)
ACTIVE(app(nil, YS)) → MARK(YS)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(app(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
MARK(cons(X1, X2)) → MARK(X1)
Used ordering: Polynomial interpretation [25]:

POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(app(x1, x2)) = 1   
POL(cons(x1, x2)) = 0   
POL(from(x1)) = 0   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(prefix(x1)) = 0   
POL(s(x1)) = 0   
POL(zWadr(x1, x2)) = 0   

The following usable rules [17] were oriented:

zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
app(mark(X1), X2) → app(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
QDP
                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(app(X1, X2)) → MARK(X1)
ACTIVE(app(nil, YS)) → MARK(YS)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(app(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(app(nil, YS)) → MARK(YS)
The remaining pairs can at least be oriented weakly.

MARK(app(X1, X2)) → MARK(X1)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(app(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
MARK(cons(X1, X2)) → MARK(X1)
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(app(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = x1   
POL(from(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(nil) = 1   
POL(prefix(x1)) = 1   
POL(s(x1)) = 0   
POL(zWadr(x1, x2)) = x1 + x2   

The following usable rules [17] were oriented:

prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)
app(active(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
app(mark(X1), X2) → app(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
mark(nil) → active(nil)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(zWadr(XS, nil)) → mark(nil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
active(from(X)) → mark(cons(X, from(s(X))))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(prefix(X)) → active(prefix(mark(X)))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
mark(s(X)) → active(s(mark(X)))
active(app(nil, YS)) → mark(YS)
mark(from(X)) → active(from(mark(X)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
active(zWadr(nil, YS)) → mark(nil)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
QDP
                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(app(X1, X2)) → MARK(X1)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(app(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.

MARK(app(X1, X2)) → MARK(X1)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(app(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(app(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 1 + x1   
POL(from(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(prefix(x1)) = 1   
POL(s(x1)) = 0   
POL(zWadr(x1, x2)) = 1 + x1 + x2   

The following usable rules [17] were oriented:

prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)
app(active(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
app(mark(X1), X2) → app(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
mark(nil) → active(nil)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(zWadr(XS, nil)) → mark(nil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
active(from(X)) → mark(cons(X, from(s(X))))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(prefix(X)) → active(prefix(mark(X)))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
mark(s(X)) → active(s(mark(X)))
active(app(nil, YS)) → mark(YS)
mark(from(X)) → active(from(mark(X)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
active(zWadr(nil, YS)) → mark(nil)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
QDP
                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(app(X1, X2)) → MARK(X1)
ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
MARK(app(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(app(X1, X2)) → MARK(X1)
MARK(app(X1, X2)) → MARK(X2)
MARK(app(X1, X2)) → ACTIVE(app(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.

ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(ACTIVE(x1)) = 0   
POL(MARK(x1)) = x1   
POL(active(x1)) = 0   
POL(app(x1, x2)) = 1 + x1 + x2   
POL(cons(x1, x2)) = 0   
POL(from(x1)) = 0   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(prefix(x1)) = 0   
POL(s(x1)) = 0   
POL(zWadr(x1, x2)) = 0   

The following usable rules [17] were oriented:

cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
QDP
                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(app(cons(X, XS), YS)) → MARK(cons(X, app(XS, YS)))

The TRS R consists of the following rules:

active(app(nil, YS)) → mark(YS)
active(app(cons(X, XS), YS)) → mark(cons(X, app(XS, YS)))
active(from(X)) → mark(cons(X, from(s(X))))
active(zWadr(nil, YS)) → mark(nil)
active(zWadr(XS, nil)) → mark(nil)
active(zWadr(cons(X, XS), cons(Y, YS))) → mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
active(prefix(L)) → mark(cons(nil, zWadr(L, prefix(L))))
mark(app(X1, X2)) → active(app(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(zWadr(X1, X2)) → active(zWadr(mark(X1), mark(X2)))
mark(prefix(X)) → active(prefix(mark(X)))
app(mark(X1), X2) → app(X1, X2)
app(X1, mark(X2)) → app(X1, X2)
app(active(X1), X2) → app(X1, X2)
app(X1, active(X2)) → app(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
zWadr(mark(X1), X2) → zWadr(X1, X2)
zWadr(X1, mark(X2)) → zWadr(X1, X2)
zWadr(active(X1), X2) → zWadr(X1, X2)
zWadr(X1, active(X2)) → zWadr(X1, X2)
prefix(mark(X)) → prefix(X)
prefix(active(X)) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.